Introduction of 4 Point Probe

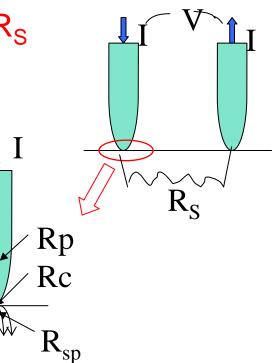
R

Revised Date : 2008/12/26

Outline

1.Resistance?Resistivity?Sheet Resistance? 2.What is 4pp? 3. Two Configurations? 4. Probe Type? 5. What can the 4pp do? 6. How important is the Rs in Semiconductor? 7. Applications of 4pp? 8.Limitation of 4pp 9. Models of CDE ResMap

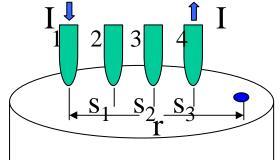
Resistance? Resistivity? Sheet Resistance?

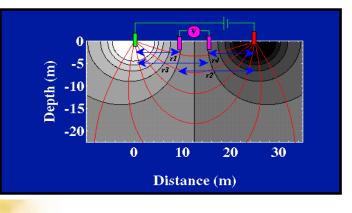

Resistance(ohm) $R = \frac{V}{I}$ Resistivity(ohm-cm) $\rho = \mathbf{R} * \frac{\mathbf{bd}}{\mathbf{l}}$ Sheet resistance(ohm/square)

$$R_{\rm S} = \frac{\rho}{d} = \frac{\pi}{\ln 2} * \frac{\rm V}{\rm I}$$

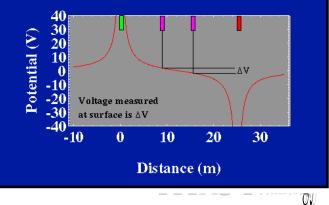
d

- Compare to 2 Point Probe
 - $R_{T} = V / I = 2R_{P} + 2R_{C} + 2R_{SP} + R_{S}$
 - R_S:sheet resistance
 - R_C:contact resistance
 - R_{SP}:spreading resistance R_P:pin resistance
- R_C & R_{SP} can't measure
- ρ can not get from V




 For 4pp :Separate the pins of Voltage & Current V=V₂ - V₃

$$V = \frac{\rho I}{2\pi} \left(\frac{1}{S_1} - \frac{1}{S_2 + S_3} - \frac{1}{S_1 + S_2} + \frac{1}{S_3} \right)$$


$$\rho = 2 \pi S \left(\frac{V}{I}\right)$$
 If S=S₁=S₂=S₃

$$\rho = 2\pi sF\left(\frac{V}{I}\right)$$

20

- Correction Factor(F=F₁F₂F₃)
 - F1: Correction Factor in Thickness
 F2: Correction Factor in lateral
 F3: Correction Factor in distance between pin and edge

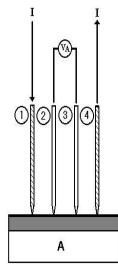
When thin film & t << S/2 $F_1 = \frac{t}{S}$

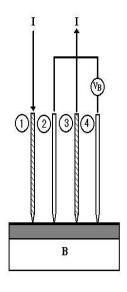
 $2 \lambda n 2$

$$\rho = \frac{\pi t}{\lambda n 2} \frac{V}{I} = 4.532 \ t \frac{V}{I}$$

$$R_{s} = \frac{\rho}{t} = \frac{\pi}{\lambda n2} \frac{V}{I} = 4.532 \frac{V}{I}$$

- ρ is usually constant
- Film thickness $t = \rho / R_s$




Two Configurations

Single Configuration $R_s = (\pi/\ln 2)x(V_{23}/I_{14}) = 4.532Ra$

Dual Configuration

R_s = {-14.696+ 25.173 (Ra/Rb) -7.872(Ra/Rb)²}Ra

Probe Type

	Туре	Tip R	Force	Spacing	Typical Application	
	Α	40u	100g	1 mm	m Metal Film	
	В	100um	100g	1 mm	m General Metal, Hi dose implant	
	С	200um	100g	1 mm	m Medium dose implant [Rs $=$ 1000 Ω]	
	D	500um	70g	1 mm	m Low dose implant.	
					Very thin metal film such as TiN, Ti, etc	
	E	40um	200g	1.58mm	m Thick substrate : doped silicon wafer, diffusion	
	F	40um	100g	0.635mm	m Similar to A probe for smaller[2mm] edge exclusion,	
					higher resolution measuremetn	
	G	100um	100g	0.635mm	m Similar to B probe for smaller[2mm] edge exclusion,	
					higher resolution measuremetn	
	Η	200um	100g	0.635mm	m Similar to C probe for smaller[2mm] edge exclusion,	
					higher resolution measuremetn	
	FC	100um	100g	0.5mm	m Similar to A probe for smaller[1.5mm] edge exclusion,	
					higher resolution measuremetn	
	GC	200um	100g	0.5mm	m Similar to C probe for smaller[1.5mm] edge exclusion,	
					higher resolution measuremetn	

What can the 4pp do?

 4pp measure : Sheet resistance Resistivity Thickness of thin film (ρ = R_s x t)

• 4pp measure wafer :

Thin Film wafer (Metal ,Alloy, ITO...) Ion Implanted wafer (High,medium,and low dose implanted wafer, normally dopant with Boron or Phosphorus)

Thin Film wafer with CMP process Diffusion wafer Epitaxy wafer (But cross type)

Resistivity of General Metal

	Contraction of the local division of the loc		
Metal	Bulk Resistivity	Film Resistivity	
	(micron-ohm-cm)	(micron-ohm-cm)	
Al	2.75	4	
Cu	1.72	2.5	
Cr	17	20~50	
Ni	7.24	50	
Ti	55.4	200	
Mo	5.33	50	
Mo-Ta		50	-
Alpha-Ta	13.1	25	0 0 10
Bata-Ta		200	N
Mo-W		15	1
10000 C	and the second s		\langle
		St In	1
		and is	15

How important is the R_s in semiconductor

- Resistivity, is a particularly important semiconductor parameter because it can be related directly to the impurity content of a sample; The four point probe is the apparatus typically used to determine bulk resistivity
- In semiconductor layers, resistivity is a strong function of depth. For circuit design, it is often convenient to work with a parameter called the "sheet resistance" (Rs).

Application of 4pp

- Know something of the sample
- Is the sample clean and fresh?
- Is the sample homogenous?
- If the sample has a layer it must be of the opposite conductivity type to the substrate
- If the layer is thin, one must avoid puncturing the layer by needle loading, by sharp needle tips, or too rapid descent velocity of probe, excessive current can also inject minority carriers.
- The smallest sample : If the spacing between probes is constant ,and the thin film THK is less than 50% of the spacing,and the edges of the film are more than 4 times the spacing distance from the measurement point->Rs =4.53V/I

Limitation of Measurement

- The material must be capable of being probed, i.e. the probes must be able to make ohmic-contact with the material
- Very low resistivity material (like AI, Au, Pt) requires the maximum current from current source to achieve a reading
- Current source is restricted because of heating effects and excessive current density at the probe tips. That means blunt tips are desirable for thinner film.
- High resistivity material (e.g. ion-implanted Si wafer, Si on sapphire) can be measured using very low current and trying to avoid a greater voltage. Probably sheet resistance up to 10⁷ ohm/sq can be measured.

Some potential problem :electrical noise due to poor contact,thermally induced voltage, actinic effect, offset voltages produced by devices in current source, and leakage in plugs,lead etc.

Thanks for your attention

Michael Tsai 886-933063779 michael@mast-tech.com.tw www.mast-tech.com.tw

